
No. 1 / 19

Example 1 - let's build a small game
with React

In this chapter:

 Project into
 The general arhitecure of our app
 How the data will flow between components
 The initial setup
 Adding props and picking a random sign in the Player component
 CSS styles
 Using inline styles
 Invoking a function in a child component from a parent component
 Adding animations
 Adding refs and a cleanup function for useEffect
 Adding a game context
 Deciding the winner

No. 2 / 19

 Project into
We have learned so many cool things about how to use various features of React.
Now let the fun start! Let's put all of this to work by making a few small functional
apps.

And what could be more fun, as our first example, than building a real small
working game !?

It will be a Rock Paper Scissor game. This is how our app will look like:

When the user presses the Start game button then our game will do the following:

start a shuffling animation. The animation is made by randomly changing the
rock, paper, or scissor signs for both players 20 times

pick a final random rock, paper, or scissor sign for the Red player

pick also a random sign for the Blue player

and will decide the winner of the round. The rules are that rock wins against
scissors, paper wins against rock, and scissors wins against paper.

You can see a short video of the application here:

▶ SEE VIDEO FOR DETAILS

No. 3 / 19

https://www.youtube.com/watch?v=K6-9740joUQ

Here are our learning objectives for this example:

splitting the app into smaller React components

working with basic concepts of components such as props, state or inline
styles

parent components triggering events in child components

the useEffect() hook, and its cleanup function

using the Context API and the useContext() hook for global state management

using refs to store values and prevent bugs

... and much more.

So, let's get to work!

The general arhitecure of our app
Before we can get our hands dirty we will need to stop and think a bit about the
architecture of our app. There are two aspects we need to decide upon:

how the UI will be split into React components

and how these components will interact and how the data will flow between
them

For this particular example, we can use the following React components:

Let's see what this will look like on the screen:

├── App
| ├── Game
| ├──── Player
| ├──── ResultBoard

No. 4 / 19

The main scope of the App component will be to render a Game component plus
define an app game context (more about this in the next sections).

The Game component will:

serve as the main container of our app

it will contain the button to start the game

and it will initiate the components of type Player and ResultBoard

Next, we have the Player component. Our game will have two instances of this
component. It will use the color property to customize the look of each instance.

Finally, we have the ResultBoard component. The role of this one is to check what
were the signs picked by the Red and Blue players and decide the winner.

By the way, we can have various other ways of splitting this UI into components. I
encourage you to experiment with different component configurations and test
their advantages and challenges.

How the data will flow between components
One other important thing to decide upon is how all of these components will
interact with each other.

Also in this case there is no single answer. We can have something like a
useReducer(), or even a full Redux store in place. Or just pass all via simple props
(even though this will be a bit clumsy).

No. 5 / 19

After the exercise is ready, just try to play with different approaches and see how it
goes. I guarantee that you will learn a lot from all of these experiments.

Coming back to our example I've decided to use the following data flow:

Let's see how all of this works:

the button from the Game component will send an event to both Player
components

when a start game event is received, a Player component will do the
following:

1. it will run the shuffling signs animation

2. it will pick a random sign from the ['rock', 'paper', 'scissors']
array

3. it will place the selected sign in a React Context store. In our case, it will
be named GameContext

after each player has picked its random sign then the ResultBoard
component comes into play. It will retrieve from the GameContext the random
signs, decide the winner of the game, and show the corresponding message.

With this planning is over and now the fun part starts! Coding!

The initial setup No. 6 / 19

The initial setup
We will start with the below code:

Nothing fancy here. Just the skeleton for our App, Game, Player and ResultBoard
components.

The Game component will render two instances of Player components and one
ResultBoard.

Thefore, we will start from this layout:

const Player = ()=> {
 return (<div className='player'>
 Player Component
 </div>)
}

const ResultBoard = () => {
 return (<div>
 No Results yet
 </div>)
}

const Game = () => {
 return (<div>
 <div className='container'>
 <Player />
 <Player />
 </div>
 <button>Start game</button>
 <ResultBoard />
 </div>)
}

const App = ()=> (<Game />)

const root = ReactDOM.createRoot(document.getElementById("root"))
root.render(<App />)

No. 7 / 19

Adding props and picking a random sign in the
Player component
At this point both instances of the Player component are identical.

We will need to customize them by passing a color parameter for each player. Also,
we want them to select a random sign from an array like this one:

This is the code that will achieve this behaviour:

const SIGNS = ['rock', 'paper', 'scissors']`

// Define an array of possible signs for the game
const SIGNS = ['rock', 'paper', 'scissors']

const Player = ({color})=> {
 // Generate a random index to pick a random sign from the array
 const randIndex = Math.floor(Math.random() * SIGNS.length)
 const randSign = SIGNS[randIndex]

 return (<div className='player'>
 {color} picks { randSign }
 </div>)
}

// the ResultBoard component remains unchanged

const Game = () => {
 return (<div>
 <div className='container'>
 <Player color='red' />

No. 8 / 19

This is how our app stands at the moment:

You can also see it live in this code sandbox:

▶ RUN CODE

CSS styles
Each app needs some CSS styles. Given that this book is not about CSS we will not
go too much into these details. In general, the CSS property names should be quite
self-explanatory.

You may have noticed that some elements have the className property.

This property will link the given element with its corresponding CSS class:

 <Player color='blue' />
 </div>
 <button>Start game</button>
 <ResultBoard />
 </div>)
}

const App = ()=> (<Game />)

<div className='player'>

<div className='container'>

No. 9 / 19

https://codesandbox.io/p/sandbox/rpc-game-start-289l89

This is all the CSS code that we will use in our app:

A few things to notice about the .player class :

the class uses native CSS selector nesting. If you are interested I've written a
separate article about it here.

we use the --card-size CSS variable to sync the values in different properties

body {
 color: white;
 background-color: cadetblue;
 text-align: center;
}

.container {
 display: flex;
 margin: 2rem;
 justify-content: space-around;
 max-width: 35rem;
 margin: 2rem auto;
}

.player {
 --card-size: 7rem;

 width: var(--card-size);
 height: var(--card-size);
 line-height: var(--card-size);
 border: 2px solid;
 border-radius: 50%;
 background-repeat: no-repeat;
 background-size: contain;
 padding: 1rem;
 background-origin: content-box;

 &:nth-child(2) {
 transform: scaleX(-1)
 }
}

No. 10 / 19

https://www.js-craft.io/blog/native-css-selector-nesting/

the transform: scaleX(-1) property applied to the second Player
component allows us to flip its view so that the signs face each other. You will
see in the next section why we need this. For the moment it only flips the text
of the component:

You can also view it in action within this code sandbox:

▶ RUN CODE

Using inline styles
Our UI is quite dull right now. Take a look at where we are and where we want to get
to:

Would be nice to use pictures instead of text for the rock, paper, scissors signs and
have the player components colored in red and blue.

Well, this is what we will do in this chapter!

No. 11 / 19

https://codesandbox.io/p/sandbox/rpc-game-styles-rydt22

For the "use pictures instead of text for the signs" part I've already made some
pictures we can use and hosted them on the site. You can see each of them in this
list:

rock: https://www.js-craft.io/_assets/rpc/rock.png

paper: https://www.js-craft.io/_assets/rpc/paper.png

scissors: https://www.js-craft.io/_assets/rpc/scissors.png

But how can we get these pictures, and the red-blue colors into our components?

We can use inline styles to do this. For each React component we can specify CSS
inline style like so:

Knowing this we can now use the received color parameter and the randomly
generated randSign to set the needed inline style so that our components are
colored and have pictures instead of text:

<Element style={{color: 'white', backgroundColor: 'red'}} />

const SIGNS = ['rock', 'paper', 'scissors']

const Player = ({color})=> {
 const randIndex = Math.floor(Math.random() * SIGNS.length)
 const randSign = SIGNS[randIndex]

 const backgroundImage = `url(https://www.js-
craft.io/_assets/rpc/${randSign}.png)`

 const inlineStyles = {
 backgroundColor: color,
 backgroundImage
 }

 return (<div className='player' style={inlineStyles} />)
}

No. 12 / 19

https://www.js-craft.io/_assets/rpc/rock.png
https://www.js-craft.io/_assets/rpc/paper.png
https://www.js-craft.io/_assets/rpc/scissors.png

And this is the current look of our app:

Note that for the backgroundImage style we are using template literals to
interpolate values into a string:

By the way, if you want to see a cool trick with template literals check out this
article I wrote some while ago.

Even if we are lacking parts of functionality such as shuffling animations or
deciding the winner, we have made real progress here!

▶ RUN CODE

Next, let's see how to make that start button do something.

Invoking a function in a child component from a
parent component
Before we make the button to actually start the game let's discuss a bit about the
initial state of our app.

`url(https://www.js-craft.io/_assets/rpc/${randSign}.png)`

No. 13 / 19

https://www.js-craft.io/blog/tagged-template-literals-in-javascript/
https://codesandbox.io/p/sandbox/rpc-game-inline-styles-v2rsr9

At this moment the random signs are selected for the players when the game first
shows up on the page. But if we take a look at the behavior of the final example we
see that initially, the players don't have a sign and random selection should take
place only when the user presses the start game button.

First of all, this means that the state of our component will be changed from a
"show no sign" to "show a random sign".

If so, we will need to add a state value to the Player components:

I've made a couple of changes here:

the sign is now managed by a state variable. This will allow us to change the
signs when the start game button is pressed

given that the sign starts now with a null value, we will need to check if we
can set a background image: sign ?url(https://www.js-
craft.io/_assets/rpc/${randSign}.png): ''

and we moved the random selection of the signs to a separate method named
pickRandomSign(). At this stage the method is not used at all.

const Player = ({color})=> {
 const [sign, setSign] = useState(null)

 const pickRandomSign = ()=> {
 const randIndex = Math.floor(Math.random() * SIGNS.length)
 const randSign = SIGNS[randIndex]
 // will need to put the randSign in sign
 }

 const backgroundImage = sign ? `url(https://www.js-
craft.io/_assets/rpc/${sign}.png)` : ''

 const inlineStyles = {
 backgroundColor: color,
 backgroundImage
 }

 return (<div className='player' style={inlineStyles} />)
}

No. 14 / 19

https://www.youtube.com/watch?v=K6-9740joUQ
https://www.js-craft.io/_assets/rpc/

In some cases, a developer may need to call a child's function from a parent
component. In our case, we want the Game component to be able to call the
pickRandomSign() method from within its two children of type Player.

We can achieve this in various ways. For example, one way is to use a mix of
useImperativeHandle() and forwardRef().

In the example, we will do it via the useEffect() hook and a trigger state. And the
reason for this is to get a better grip on the fundaments of working with useEffect.

Here is what we are going to do:

1. Define a trigger state within the parent component and pass it down to the
child component. We will name it startTime

2. In the child compoent monitor changes in startTime with useEffect(), and
when the value undergoes a change, invoke the pickRandomSign() function.

3. With this in place, if we wish to call the pickRandomSign() function from the
Game component, we just need to modify the trigger state startTime

Ok, I know this may sound confusing, but it will get simpler when we see it in code:

const Player = ({color, startTime})=> {
 const [sign, setSign] = useState(null)

 useEffect(()=> {
 if (startTime) {
 pickRandomSign()
 }
 }, [startTime])

 const pickRandomSign = ()=> {
 const randIndex = Math.floor(Math.random() * SIGNS.length)
 const randSign = SIGNS[randIndex]
 setSign(randSign)
 }

 const backgroundImage = sign ? `url(https://www.js-
craft.io/_assets/rpc/${sign}.png)` : ''

 const inlineStyles = {
 backgroundColor: color,
 backgroundImage
 }

No. 15 / 19

What we have done here is solve this part from the data flow diagram:

Each time we press the button a new date is generated by Date.now() and placed
into startTime. This updates the startTime parameter and from there
useEffect() calls pickRandomSign().

▶ RUN CODE

Next on the list? Adding animations.

Adding animations

 return (<div className='player' style={inlineStyles} />)
}

const Game = () => {
 const [startTime, setStartTime] = useState(null)

 const startGame = ()=> setStartTime(Date.now())

 return (<div>
 <div className='container'>
 <Player color='red' startTime={startTime} />
 <Player color='blue' startTime={startTime} />
 </div>
 <button onClick={startGame}>Start game</button>
 <ResultBoard />
 </div>)
}

No. 16 / 19

https://codesandbox.io/p/sandbox/rpc-game-events-child-3tzyjs

Adding animations
How can we add that shuffle animations? Currently, we just pick a random sign and
that's it.

Also in this case, there are multiple ways to achieve the same goal. I think we can
do it even with pure CSS.

But, to go more into the weeds with how React works, will make this using a timer
and the setInterval() function of Javascript.

To simulate the animation, our method involves selecting a fresh random symbol
every 100ms for each Player component.

We will track how many random picks we have done in a state variable named
animCounter.

After 20 random picks, we will stop by calling clearInterval() and keep the last
sign.

Let's translate all of this into code:

const Player = ({color, startTime})=> {
 const [sign, setSign] = useState(null)
 // keeps track of the number of steps that compose the shuffling
animation
 const [animCounter, setAnimCounter] = useState(0)

 useEffect(()=> {
 if (startTime) {
 pickRandomSign()
 }
 }, [startTime])

 const pickRandomSign = ()=> {
 // reset the counter at each animation start
 setAnimCounter(0)
 let animInterval = setInterval(() => {
 // updating a state based on a previous value; see earlier
chapters
 setAnimCounter(prev => prev + 1)
 const randIndex = Math.floor(Math.random() * SIGNS.length)
 const randSign = SIGNS[randIndex]
 setSign(randSign)

No. 17 / 19

You can take a look at the current state of the app in this sandbox.

▶ RUN CODE

Unfortunately, while the animation starts nicely we have some bugs in our
application.

Can you spot them? Take a deeper look. I will wait.
...
Ok, here they are:

 // stop the random picks after 20 iterations
 if(animCounter > 20) {
 clearInterval(animInterval)
 }
 }, 100)
 }

 const backgroundImage = sign ? `url(https://www.js-
craft.io/_assets/rpc/${sign}.png)` : ''

 const inlineStyles = {
 backgroundColor: color,
 backgroundImage
 }

 return (<div className='player' style={inlineStyles} />)
}

No. 18 / 19

https://codesandbox.io/p/sandbox/rpc-game-animations-zcwdh4

Do you have any idea why they happen? Let's see in the next chapter how to fix
them.

No. 19 / 19

