
Example: let's build a small game with
React

We have learned so many cool things about how to use various features of React. Now let the

fun start! Let's put all of this to work by making a few small functional apps.

And what could be more fun, as our first example, than building a real small working game !?

It will be a Rock Paper Scissor game. This is how our app will look like:

When the user presses the Start game button then our game will do the following:

start a shuffling animation. The animation is made by randomly change the rock, paper,

or scissor signs for both players 20 times

pick a final random rock, paper, or scissor sign for the Red player

pick also a random sign for the Blue player

and will decide the winner of the round. The rules are that rock wins against scissors,

paper wins against rock, and scissors wins against paper.

https://github.com/daniel-jscraft/That_Book_About_React/blob/main/img/rpc-final.png
https://github.com/daniel-jscraft/That_Book_About_React/blob/main/img/rpc-final.png

You can see a short video of the application here.

▶ SEE VIDEO FOR DETAILS

What are our learning objectives for his example:

splitting the app into smaller React components

working with basic concepts of components such as props, state or inline styles

parent components triggering events in child components

the useEffect() hook, and its cleanup function

using the Context API and the useContext() hook for global state management

using refs to store values and prevent bugs

... and much more.

So, let's get to work!

The general arhitecure of our app

Before we can get our hands dirty we will need to stop and think a bit about the architecture

of our app. There are two aspects we need to decide upon:

how the UI will be split into React components

and how these components will interact, how the data will flow between them

For this particular example, I've thought we could have the following React components:

├── App
| ├── Game
| ├──── Player
| ├──── ResultBoard

https://www.youtube.com/watch?v=K6-9740joUQ

Let's see what this will look like on the screen:

.

The main scope of the App component will be to render a Game component plus define an

app game context (more about this in the next sections).

The Game component will serve as the main container of our app. It will contain the button to

start the game, it will initiate both the components of type Player and the ResultBoard

component.

Next, we have the Player component. Our game will have two instances of this component.

It will use the color property to customize the look of each instance.

Finally, we have the ResultBoard component. The role of this one is to check what were the

signs picked by the Red and Blue players and decide the winner.

By the way, we can have various other ways of splitting this UI into components. I encourage

you to experiment with different component configurations and test their corresponding

advantages and challenges.

How the data will flow between components

One other important thing to decide upon is how all of these components will interact with

each other.

Also in this case there is no single answer. We can have something like a useReducer(), or

even a full Redux store in place. Or just pass all via simple props (even though this will be a

bit clumsy).

https://github.com/daniel-jscraft/That_Book_About_React/blob/main/img/rpc-components-arhitecture.png
https://github.com/daniel-jscraft/That_Book_About_React/blob/main/img/rpc-components-arhitecture.png

After the exercise is ready, just try to play with different approaches and see how it goes. I

guarantee that you will learn a lot from all of these experiments.

Coming back to our example I've decided to use the following data flow:

Let's see how all of this works:

the button from the Game component will send an event to both Player components

when a start game event is received, a Player component will do the following:

i. it will run the shuffling signs animation

ii. it will pick a random sign from the ['rock', 'paper', 'scissors'] array

iii. it will place the selected sign in a React Context store. In our case, it will be named
GameContext

after each player has picked its random sign then the ResultBoard component comes

into play. It will retrieve from the GameContext the random signs, decide the winner of

the game, and show the corresponding message.

Now the fun part starts! Coding!

The initial setup

We will start with the below code:

const Player = ()=> {
 return (<div className='player'>
 Player Component
 </div>)
}

https://github.com/daniel-jscraft/That_Book_About_React/blob/main/img/rpc-data-flow.png
https://github.com/daniel-jscraft/That_Book_About_React/blob/main/img/rpc-data-flow.png

Nothing fancy here. Just the skeleton for our App , Game , Player and ResultBoard
components.

The Game component will render two instances of Player components and one

ResultBoard .

Thefore, we will start from this layout:

Adding props and picking a random sign in the Player
component

At this point both instances of the Player component are identical.

const ResultBoard = () => {
 return (<div>
 No Results yet
 </div>)
}

const Game = () => {
 return (<div>
 <div className='container'>
 <Player />
 <Player />
 </div>
 <button>Start game</button>
 <ResultBoard />
 </div>)
}

const App = ()=> (<Game />)

const root = ReactDOM.createRoot(document.getElementById("root"))
root.render(<App />)

https://github.com/daniel-jscraft/That_Book_About_React/blob/main/img/rpc_initial.png
https://github.com/daniel-jscraft/That_Book_About_React/blob/main/img/rpc_initial.png

We will need to customize them by passing a color parameter for each player. Also, we

want them to select a random sign from an array like this one: const SIGNS = ['rock',
'paper', 'scissors'] .

This is the code that will achieve this:

This is how our app stands at the moment:

// Define an array of possible signs for the game
const SIGNS = ['rock', 'paper', 'scissors']

const Player = ({color})=> {
 // Generate a random index to pick a random sign from the array
 const randIndex = Math.floor(Math.random() * SIGNS.length)
 const randSign = SIGNS[randIndex]

 return (<div className='player'>
 {color} picks { randSign }
 </div>)
}

// the ResultBoard component remains unchanged

const Game = () => {
 return (<div>
 <div className='container'>
 <Player color='red' />
 <Player color='blue' />
 </div>
 <button>Start game</button>
 <ResultBoard />
 </div>)
}

const App = ()=> (<Game />)

https://github.com/daniel-jscraft/That_Book_About_React/blob/main/img/rpc-step-1.png
https://github.com/daniel-jscraft/That_Book_About_React/blob/main/img/rpc-step-1.png

You can also see it live in this code sandbox:

▶ RUN CODE

CSS styles

Each app needs some CSS styles. Given that this book is not about CSS we will not go too

much into these details. But overall the CSS property names should be quite self-explanatory.

You may have noticed that some elements have the className property.

This property will link the given element with the corresponding CSS class:

This is all the CSS code that we will use in our app:

<div className='player'>

<div className='container'>

body {
 color: white;
 background-color: cadetblue;
 text-align: center;
}

.container {
 display: flex;
 margin: 2rem;
 justify-content: space-around;
 max-width: 35rem;
 margin: 2rem auto;
}

.player {
 --card-size: 7rem;

 width: var(--card-size);
 height: var(--card-size);
 line-height: var(--card-size);
 border: 2px solid;
 border-radius: 50%;
 background-repeat: no-repeat;
 background-size: contain;
 padding: 1rem;
 background-origin: content-box;

https://codesandbox.io/p/sandbox/rpc-game-start-289l89

A few things to notice about the .player class :

the class uses native CSS selector nesting. If you are interested I've written a separate

article about it here.

we use the --card-size CSS variable to sync the values in different properties

the transform: scaleX(-1) property applied to the second Player component allows us

to flip its view so that the signs face each other. You will see in the next section why we

need this. For the moment it only flips the text of the component:

▶ RUN CODE

 &:nth-child(2) {
 transform: scaleX(-1)
 }
}

https://www.js-craft.io/blog/native-css-selector-nesting/
https://github.com/daniel-jscraft/That_Book_About_React/blob/main/img/rpc-css.png
https://github.com/daniel-jscraft/That_Book_About_React/blob/main/img/rpc-css.png
https://codesandbox.io/p/sandbox/rpc-game-styles-rydt22

Using inline styles

Our UI is quite dull right now. Take a look at where we are and where we want to get to:

Would be nice to use pictures instead of text for the rock, paper, scissors signs and have the

player components colored in red and blue.

Well, this is what we will do in this chapter!

For the "use pictures instead of text for the signs" I've already made some pictures we can

use and hosted them on the site. You can see each of them in this list:

rock: https://www.js-craft.io/_assets/rpc/rock.png

paper: https://www.js-craft.io/_assets/rpc/paper.png

scissors: https://www.js-craft.io/_assets/rpc/scissors.png

Now how can we get these pictures, and the red-blue colors into our components? We can

use inline styles for this.

For each React component we can specify CSS inline style like so:

Knowing this we can now use the received color parameter and the randomly generated
randSign to set the needed inline style so that our components are colored and have

pictures instead of text:

<Element style={{color: 'white', backgroundColor: 'red'}} />

const SIGNS = ['rock', 'paper', 'scissors']

const Player = ({color})=> {
 const randIndex = Math.floor(Math.random() * SIGNS.length)
 const randSign = SIGNS[randIndex]

https://github.com/daniel-jscraft/That_Book_About_React/blob/main/img/rpc-inline-style-VS.png
https://github.com/daniel-jscraft/That_Book_About_React/blob/main/img/rpc-inline-style-VS.png
https://www.js-craft.io/_assets/rpc/rock.png
https://www.js-craft.io/_assets/rpc/paper.png
https://www.js-craft.io/_assets/rpc/scissors.png

And this is the current look of our app:

Note that for the backgroundImage style we are using template literals to interpolate values

into a string:

By the way, if you want to see a cool trick with template literals check out this article I wrote

some while ago.

Even if we are lacking parts of functionality such as shuffling animations or deciding the

winner, we have made real progress here!

▶ RUN CODE

 const backgroundImage = `url(https://www.js-craft.io/_assets/rpc/${randS

 const inlineStyles = {
 backgroundColor: color,
 backgroundImage
 }

 return (<div className='player' style={inlineStyles} />)
}

`url(https://www.js-craft.io/_assets/rpc/${randSign}.png)`

https://github.com/daniel-jscraft/That_Book_About_React/blob/main/img/rpc-inline-styles.png
https://github.com/daniel-jscraft/That_Book_About_React/blob/main/img/rpc-inline-styles.png
https://www.js-craft.io/blog/tagged-template-literals-in-javascript/
https://codesandbox.io/p/sandbox/rpc-game-inline-styles-v2rsr9

Next, let's see how to make that start button do something.

Invoking a function in a child component from a parent
component

Before we make the button to actually start the game let's discuss a bit about the initial state

of our app.

At this moment the random signs are selected for the players when the game first shows up

on the page. But if we take a look at the behavior of the final example we see that initially, the

players don't have a sign and random selection should take place only when the user presses

the start game button.

First of all, this means that the state of our component will be changed: from a "show no

sign" to "show a random sign".

If so, we will need to add a state to the Player components:

I've made a couple of changes here:

first the sign is now managed by a state variable. This will allow us to change the signs

when the start game button is pressed

given that the sign starts now with a null value, we will need to check if we can set a

background image: sign ? url(https://www.js-craft.io/_assets/rpc/${randSign}.png)` :
''`

const Player = ({color})=> {
 const [sign, setSign] = useState(null)

 const pickRandomSign = ()=> {
 const randIndex = Math.floor(Math.random() * SIGNS.length)
 const randSign = SIGNS[randIndex]
 // will need to put the randSign in sign
 }

 const backgroundImage = sign ? `url(https://www.js-craft.io/_assets/rpc/

 const inlineStyles = {
 backgroundColor: color,
 backgroundImage
 }

 return (<div className='player' style={inlineStyles} />)
}

https://www.youtube.com/watch?v=K6-9740joUQ
https://www.js-craft.io/_assets/rpc/$%7BrandSign%7D.png)%60

and we moved the random selection of the signs to a separate method
pickRandomSign() . For the time being this method is not used at all.

In some cases, a developer may need to call a child's function from a parent component. In

our case, we want the Game component to be able to call the pickRandomSign() method

from within its two children of type Player .

We can achieve this in various ways. For example, one way is to use a mix of
useImperativeHandle() and forwardRef() .

For this example, I will do it via the useEffect() hook and a trigger state. And the reason for

this is to get a better grip on the fundaments of working with useEffect.

Here is what we are going to do:

�. Define a trigger state within the parent component and pass it down to the child

component. We will name it startTime

�. In the child monitor changes in this state with useEffect, and when it undergoes a

change, invoke the needed function.

�. With this in place, if we wish to call the pickRandomSign() function from the Game

component, ensure to modify the trigger state startTime

Ok, I know this may sound confusing, but it will get simpler when we see it in code:

const Player = ({color, startTime})=> {
 const [sign, setSign] = useState(null)

 useEffect(()=> {
 if (startTime) {
 pickRandomSign()
 }
 }, [startTime])

 const pickRandomSign = ()=> {
 const randIndex = Math.floor(Math.random() * SIGNS.length)
 const randSign = SIGNS[randIndex]
 setSign(randSign)
 }

 const backgroundImage = sign ? `url(https://www.js-craft.io/_assets/rpc/

 const inlineStyles = {
 backgroundColor: color,
 backgroundImage
 }

What we have done here is solve this part from the data flow diagram:

Each time we press the button a new date is generated by Date.now() and placed into
startTime . This update will be propagated to the child startTime parameter and from

there useEffect() calls pickRandomSign() .

▶ RUN CODE

Next on the list? Adding animations.

 return (<div className='player' style={inlineStyles} />)
}

const Game = () => {
 const [startTime, setStartTime] = useState(null)

 const startGame = ()=> setStartTime(Date.now())

 return (<div>
 <div className='container'>
 <Player color='red' startTime={startTime} />
 <Player color='blue' startTime={startTime} />
 </div>
 <button onClick={startGame}>Start game</button>
 <ResultBoard />
 </div>)
}

https://github.com/daniel-jscraft/That_Book_About_React/blob/main/img/rpc-data-flow-event.png
https://github.com/daniel-jscraft/That_Book_About_React/blob/main/img/rpc-data-flow-event.png
https://codesandbox.io/p/sandbox/rpc-game-events-child-3tzyjs

Adding animations

How can we add that shuffle animations? Currently, we just pick a random sign and that's it.

In this case, also there are multiple ways to achieve the same goal. I think we can do it even

with pure CSS.

But to go more into the weeds with how React works, will make this using a timer and the
setInterval() function of Javascript.

In order to simulate the animation what we do is to pick a new random sign at a 100ms

interval for each Player component.

We will track how many random picks we have done in a state variable named animCounter .

After 20 random picks, we will stop by calling clearInterval() and keep the last sign.

Let's translate all of this into code:

const Player = ({color, startTime})=> {
 const [sign, setSign] = useState(null)
 // keeps track of the number of steps that compose the shuffling animati
 const [animCounter, setAnimCounter] = useState(0)

 useEffect(()=> {
 if (startTime) {
 pickRandomSign()
 }
 }, [startTime])

 const pickRandomSign = ()=> {
 // reset the counter at each animation start
 setAnimCounter(0)
 let animInterval = setInterval(() => {
 // updating a state based on a previous value; see earlier chapt
 setAnimCounter(prev => prev + 1)
 const randIndex = Math.floor(Math.random() * SIGNS.length)
 const randSign = SIGNS[randIndex]
 setSign(randSign)
 // stop the random picks after 20 iterations
 if(animCounter > 20) {
 clearInterval(animInterval)
 }
 }, 100)
 }

 const backgroundImage = sign ? `url(https://www.js-craft.io/_assets/rpc/

You can take a look at the current state of the app in this sandbox.

▶ RUN CODE

Unfortunately, while the animation starts nicely we have some bugs in our application.

Can you spot them? Take a deeper look. I will wait.

....

....

Ok, here they are:

Do you have any idea why they happen? Let's see in the next chapter how to fix them.

 const inlineStyles = {
 backgroundColor: color,
 backgroundImage
 }

 return (<div className='player' style={inlineStyles} />)
}

https://codesandbox.io/p/sandbox/rpc-game-animations-zcwdh4
https://github.com/daniel-jscraft/That_Book_About_React/blob/main/img/rpc-bugs.png
https://github.com/daniel-jscraft/That_Book_About_React/blob/main/img/rpc-bugs.png

